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Solar activity plays an important role when considering terrestrial
communication. Solar activity plays an even more important role
when working with communication systems relying on artificial satel-
lites. Electromagnetic emissions, known as solar flares, can disrupt
communications and damage important infrastructure. However, as
powerful solar flares are often preceded by observable occurrences
of sunspots, a robust system prognosis system can be leveraged to
help improve chances of minimizing damage to infrastructure. This
work explored the potential of recurrent neural networks coupled
with an introduced modified metaheuristic algorithm to tackle the
increasingly pressing challenge of forecasting solar activity based
on historical data. Due to the heavy reliance of neural networks
on proper parameter selections as well as adequate architectural
structure, the introduced optimizer is leveraged for the optimization
of these control parameters. The proposed approach is evaluated
on a real-world dataset that is publicly available. The outcomes are
compared to several well-established optimization metaheuristics,
and the outcomes show great promise for tackling this increasingly
important topic as we head into the peak of the current solar cycle.
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1. Introduction
Weather conditions in space, especially those near Earth, have been known to have an influence on
telecommunications, satellites, aircraft, and spacecraft functioning [1, 2]. Because of this, a field of
research focusing on space climate is becoming more popular. Unsurprisingly, the Sun is one of the bigger
contributors to the solar system’s weather conditions because of its varying emissions of energy, sunspots,
and solar flares. Solar flares are often followed by significant emissions of electromagnetic energy, and
whilst most of these are minor and partially mediated by Earth’s magnetic field, they may cause
geomagnetic storms that affect, as mentioned, telecommunications, satellites, and such [3, 4]. In the case
of more severe interference, radio blackouts and damage to ground communication and infrastructure may
occur. Since the flares tend to be preceded by sunspots, a valid way of predicting flares is actually by
predicting sunspots.

To deal with and prevent these unwanted consequences, a way of predicting solar events using an accurate
data-driven system is needed. The solar magnetic cycle refers to a well-known pattern of solar events
almost periodically happening every 11 years [5]. The high period of the cycle is of particular interest
since the emissions are more frequent during it. Therefore weather conditions have a bigger influence on
Earth. Sunspots, solar flares, and electromagnetic emissions have been observed increasingly during the
high period. Solar data processing is necessary to be done quickly since the effect of flares on Earth can
be felt within minutes [6]. Reliably and accurately predicting the solar cycle is still a challenge in
astrophysics, while the solution could also be useful to the field of magneto-hydrodynamics. Forecasting
solar flares would, of course, enable preventative measures to be taken and sensitive infrastructure
preserved.

Artificial intelligence (AI) is one of the more promising approaches to forecasting solar flares and their
effects on Earth. AI has been successfully utilized for many realistic problems due to advancements in
computational power and increased research in the field. Since sunspots are a common precursor of solar
flares, they could be used to forecast future solar events [7]. AI algorithms most suited for this task would
be those using temporal data, as solar activity tends to be periodic. Defining the task as a time series
forecasting problem would allow for optimal and accurate predictions via AI algorithms serving as early
warnings for the events.

In order to properly implement AI to predict solar flares, enough data is required to train and evaluate
the algorithms. Since many scientific facilities monitor and document solar weather, this issue is resolved.
A different challenge is posed by hyperparameter tuning [8]. Modern algorithms tend to do generally well
on broader tasks. However, they require extra adjustment to suit particular tasks better. The
hyperparameter selection process tends to be an NP-hard problem since the values include both discreet
and continuous data. With this in mind, hyperparameter tuning should be done through automatic
methods to ensure the truly optimal functioning of the algorithm. In line with the "No free lunch"
(NFL) [9] theorem, no single solution is best for all presented problems. Testing of multiple possible
solutions is thus needed to find the best-suited one for the particular problem.

One of the promising options for dealing with NP-hard problems such as hyperparameter tuning is
metaheuristic algorithms [10]. They present a category of algorithms using advanced search methods to
attain the optimal solution from a search space without getting stuck on the local best solutions.
Metaheuristic algorithms are based on groups of cooperative members often found in nature. Swarm
intelligence is a subcategory of metaheuristic algorithms, implementing agent populations that are
improved through each iteration until an optimal solution is found, making them an especially good
candidate for tackling hyperparameter tuning. Because of this feature, swarm intelligence provides an
optimal or near-enough solution while spending realistic computational resources and within reasonable
time frames.
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In this work, an approach based on time series forecasting that relies on RNN is applied to predict the
number of upcoming sunspots. Additionally, a modified version of a well-known metaheuristic is
introduced to help tune hyperparameter values and improve overall performance. The proposed
methodology is evaluated on a real-world, publicly available dataset that spans an entire century of
observations.

A brief summary of the scientific contributions of this work is as follows:

• A proposal for a time-series-based approach for predicting the number of occurring sunspots in
upcoming months.

• An introduction of a modified version of a well-known optimization algorithm applied to
hyperparameter tuning specifically for the needs of this work.

• The application of the introduced methodology to a real-world publicly available dataset to
demonstrate and assess performance and viability.

This work has the following structure: in Section 2, previous relevant research is presented. The
introduction and explanation of the modified metaheuristic algorithm can be found in Section 3. In
Section 4, the utilized dataset, metrics for the evaluation of models, and experimental parameters are
presented. The results of the conducted experiments are presented in Section 5. Lastly, Section 6 presents
the conclusion of the work and future research plans and recommendations.

2. Related Works
Solar flares have recently gained additional attention in the scientific community considering their effect
on Earth, leading to extensive documentation of these solar events. However, the knowledge and interest
in them are not new, as they have been regularly observed since the XIX century, overall resulting in
significant amounts of readily available data. As flares generally result from sunspots, sunspots are often
used as markers for forecasting solar activity. Some of the contributors to the collected data are the
National Solar Observatory (NSO) [11], ESAC Solar Observatory (Helios) [12], and the Wilcox Solar
Observatory (WSO) [13].

Standard statistical methods were initially employed to analyze this abundance of data on solar events.
However, they were found to be somewhat lacking in comparison to the novel deep learning methods
approach. Techniques continue to develop inspired by the problem of accurately forecasting solar flares,
more specifically, using sunspots.

Convolutional Neural Networks (CNNs) [14] are one of the tried and true ways for the classification of
solar flares. Since they are designed with image recognition in mind, CNNs are a great fit for analyzing
solar flare data and sunspots that preceded them [15]. They have also been successfully implemented in
the prediction of solar events. Alongside CNNs, RNNs [16] have also achieved good prediction of solar
flares thanks to their ability to model temporal dependencies. Considering the previously explained
periodic nature of sunspots and solar flares, RNNs recognize the latent patterns of flare eruptions,
therefore successfully predicting them based on available data. This has been shown in previous research
where RNNs have predicted potential dangerous solar events well, providing timely warnings.

The use of the mentioned deep learning methods has made a significant mark on the research of solar
events, providing crucial knowledge of their mechanisms and nature. Finding the optimal way to use deep
learning for space weather forecasting is a prerogative considering its potential to minimize and even
prevent damage to Earth’s functioning and infrastructure.
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2.1. Recurrent neural networks
Time series prediction serves as the driving force behind advancements in artificial neural networks
(ANN) [17]. In contrast to the multilayer perceptron, the distinguishing feature of RNN lies in the
introduction of delayed connections among the hidden units. These modifications enable the model to
exhibit sensitivity towards temporal occurrences of extended duration. The application of RNNs has been
widely recognized as a high-performing solution.

While retaining fundamental elements of a neural network, such as neurons and connections, RNNs
possess the ability to iterate a particular operation for sequential inputs through the incorporation of
recurrent connections. Consequently, RNNs possess a memory component that captures processed values
and facilitates their utilization alongside future inputs. Given an input sequence I = i1, i2, i3, ..., iT , at
each time step t, the network repeats the operation described by Equation (1).

[
ôt

ht

]
= ϕW (it, ht−1) (1)

within the given context, ôt and ht denote the output and hidden state at time t, respectively.
Additionally, ϕW symbolizes a neural network characterized by a weighted network W . These networks
take into account the t-th input it along with the preceding hidden state ht − 1 as inputs. The
architecture of an RNN is highly adaptable, making it well-suited for tackling a diverse range of intricate
problems.

2.2. Metaheuristic Optimization
As the current AI algorithms get more complex, a need arises for better optimization techniques. With
the control parameters becoming more numerous, the process of implementation becomes more accurate
but also more dependent on finding optimal values. Metaheuristic algorithms address this pending
problem, with swarm intelligence being a particularly useful subcategory.

These algorithms mimic the mating, foraging, and hunting behaviors of various living beings via
mathematical models that reflect the nature of these behaviors. Often used swarm intelligence algorithms
include Artificial Bee Colony (ABC) [18], Firefly Algorithm (FA) [19], Bat Algorithm (BA) [20], and the
recent Reptile Search Algorithm (RSA) [21], as well as some inspired by more abstract concepts such as
the Sine Cosine Algorithm (SCA) [22], Particle Swarm Optimizer (PSO) [23], and the notably powerful
COLSHADE [24] Optimization Algorithm. The concept of evolution has also been utilized in the
particularly efficient Genetic Algorithm (GA) [25].

Because of their outstanding performance regarding general optimization, metaheuristic algorithms have
been successfully implemented in many different fields. Some of them include computer system
security [26], addressing complex challenges in emerging industries [27], application in environmental
sciences [28]. More specifically, metaheuristics have achieved great results in time series
forecasting [29, 30], suggesting they may be a viable option for time series prognosis of sunspots.

3. Methods
The following section presents the original metaheuristic algorithm and highlights the mechanisms used
for the optimization. This is then followed by a brief discussion on how the algorithms see improvement
and the mechanisms incorporated into the modified version of the algorithm.
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3.1. Original SCA
The optimization process of the SCA [22] begins with a collection of random solutions as a starting point.
These solutions are then enhanced using a set of rules that form the basis of an optimization approach.
The effectiveness of this approach is evaluated by an objective function. Both stages of the optimization
process, namely exploration, and exploitation, are equally important.

During the exploration stage, the optimization algorithm combines the random solutions with a high
degree of unpredictability, with the goal of identifying the most promising areas within the search space.
However, as the process transitions to the exploitation phase, the random solutions undergo progressive
modifications, and the level of random fluctuations decreases significantly compared to the exploration
phase. In this study, the following equations for updating positions are proposed for both stages:

Xt+1
i = Xt

i + r1 × sin (r2) × |r3P t
i − Xt

i | (2)

Xt+1
i = Xt

i + r1 × cos (r2) × |r3P t
i − Xt

i i| (3)

where the position of the current solution in the i-th dimension at the t-th iteration is denoted as Xt
i .

Random values r1, r2, and r3 are used, and Pi represents the position of the destination point in the i-th
dimension. The absolute value is denoted by ||. The combination of these two equations is as follows:

Xt+1
i =

{
Xt

i + r1 × sin (r2) × |r3P t
i − Xt

i |, r4 < 0.5
Xt

i + r1 × cos (r2) × |r3P t
i − Xt

i i|, r4 ≥ 0.5
(4)

where r4 is a random number in [0, 1].

The SCA method incorporates four important parameters: r1, r2, r3, and r4. The parameter r1
determines the position regions during the optimization process. The parameter r2 determines the
magnitude of movement. The parameter r3 controls the influence of an endpoint on solutions. Lastly, the
parameter r4 is responsible for switching between the sine and cosine functions in Equation 4.

3.2 Modified SCA
While the SCA [22] optimizer demonstrates admirable performance, extensive experimentation as well as
testing with standard CEC [31] functions suggests that further improvements are possible. As the SCA
can, in certain executions, demonstrate less favorable performance caused by an excessive focus on less
promising regions of the search space. This results in overall decreased quality of outcomes.

Fortunately, algorithm hybridization is a well-established approach for overcoming known deficiencies of
optimization algorithms. This work incorporates the well-known FA search mechanism shown in Eq. 5
into the basic SCA [22] algorithm to overcome the observed lack of exploratory power.

Xt+1
i = Xt

i + β0 · e−γr2
i,j (Xt

j − Xt
i ) + αt(κ − 0.5) (5)

where the randomization variable is defined as α, κ denotes the pseudo-random number taken from the
Gaussian distribution. The range among individuals i and j is given by ri,j . Variable γ defines the light
propagating characteristic of the media, and β0 is solution quality defined by the objective function
outcomes.
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The resulting low-level hybrid algorithms incorporate one additional mechanism in order to maintain
good stability and allow both algorithms to contribute to the optimization process. The parameter ϕ is
attached to each solution. In every iteration, a pseudo-random value in range [0, 1] is generated for ϕ. If
the value of ϕ for that solution is greater than 0.5 it utilizes the FA search mechanism. Otherwise, the
standard SCA search is utilized. To encourage stability, this mechanism is only enabled following 1

3 of the
initial iterations.

Algorithm 1 Pseudocode of the HSA-SCA metaheuristics
Initialize a population of solution (X)
while t < maxIter do

Evaluate fitness of population
for Each agent in (X) do

if t < maxIter
3 then

Carry out SCA search
else

if rnd < sm then
Carry out SCA search

else
Carry out FA search

return The current most fit individual established as the global optimum

4. Experimental Setup
This study utilizes historical sunspot data to forecast the number of future sunspots. The data is
presented as a time series, and recurrent neural networks (RNNs) are employed to generate informed
predictions three steps ahead. For evaluation purposes, a publicly available dataset [32] is utilized and
can be publicly accessed 1.

A single-variable time series of observed sunspots spanning from 1789 to 2018, recorded on a monthly
basis, is employed. The RNN model is trained to predict the number of sunspots for the next three
months based on the preceding six months of data. The training process utilizes 70% of the dataset, 10%
for validation, and the remaining 20% is used for testing and evaluating the model’s performance.

During testing, metaheuristic algorithms have been tasked with selecting optimal parameters for RNN
models in order to attain higher prediction accuracy. While there are many options for which parameters
could be optimized, the selection for this work was narrowed down to a smaller subset that has the
highest impact on model performance. Training parameters such as learning rate and number of training
epochs have been tuned from respective ranges of [0.0001, 0.01] and [0.05, 0.2], respectively. Additionally,
network architectures were optimized. The number of layers was selected from a range of [1, 3], and the
number of neurons in each layer was optimized from within a range of [100, 300]. Additionally, an early
stopping condition of epochs

3 is used to help prevent overrating. Each constructed model was tasked with
forecasting the number of sunspots three steps ahead based on six lags of historical data.

The evaluated metaheuristics include the introduced algorithm alongside the original SCA [22]. Several
well-established algorithms have also been included to form a more complete comparison. The
metaheuristics have all been subjected to identical test conditions and include the well-established
GA [25], PSO [23], ABC [18], and FA [19]. Each algorithm was allocated a population of eight agents and
allowed ten iterations to improve solution quality. Additionally, to account for the randomness inherent in
metaheuristics algorithms, experiments were repeated through 30 independent runs.

1https://www.kaggle.com/datasets/robervalt/sunspots
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To assess performance, several metrics are tracked during testing. These include: mean squared error
(MSE), root mean squared error (RMSE), mean absolute error (MAE), and lastly, the coefficient of
determination (R2) shown respectively in Eq. (6), Eq. (7), Eq. (8) and Eq. (9). In all equations, ŷi

represents the load forecast, yi is the actual value, ȳ is the arithmetic mean of actual values. Finally, N
represents the total number of data samples.

MSE = 1
N

N∑
i=1

(ŷi − yi)2 (6)

RMSE =

√√√√ 1
N

N∑
i=1

(ŷi − yi)2 (7)

MAE = 1
N

N∑
i=1

|ŷi − yi| (8)

R2 = 1 −
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳi)2 (9)

To further assess model performance, an additional metric is introduced. The Index of Agreement (IoA)
is calculated as described in Eq. (10).

IoA = 1 −
∑n

i=1(yi − ŷi)2∑n
i=1(|yp − ȳ| + |yi − ȳ|)2 (10)

where ŷi represents the forecast value, yi is the actual value, ȳ is the arithmetic mean of actual values.

5. Experimental Outcomes
Experimental outcomes of the objective function (MSE) for the 30 independent runs have been recorded,
and the outcomes for the best and worst runs, alongside the median and mean outcomes, are shown in
Table 2. Additionally, to demonstrate algorithms stability, standard deviation, and variance are given.

Table 2: Objective function overall outcomes
Method Best Worst Mean Median Std Var
RNN-MSCA 0.004774 0.004935 0.004842 0.004843 7.30E-05 5.30E-09
RNN-SCA 0.004899 0.004959 0.004940 0.004943 1.98E-05 3.93E-10
RNN-GA 0.004843 0.004956 0.004911 0.004910 4.10E-05 1.68E-09
RNN-PSO 0.004873 0.004952 0.004927 0.004930 2.88E-05 8.27E-10
RNN-ABC 0.004857 0.004936 0.004898 0.004895 2.74E-05 7.48E-10
RNN-FA 0.004905 0.004937 0.004922 0.004922 1.17E-05 1.38E-10

As it can be observed in Table 2, the introduced algorithm demonstrated remarkable optimization
potential, with optimized models outperforming all competing algorithms. Additionally, it is worth noting
that the FA, while not attuning to the optimal outcomes, demonstrated impressive stability. Stability
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Figure 1: Objective and indicator function distribution graphs

comparisons between the tested algorithms can be seen in Figure 1 for both the objective and indicator
functions.

Additionally, detailed overall metrics for the best-performing models generated by each metaheuristic are
demonstrated in Table 3

Table 3: Overall evaluation metric outcomes for each optimization metaheuristic
Method R2 MAE MSE RMSE IoA
RNN-MSCA 0.843275 20.359986 756.928665 27.512337 0.955431
RNN-SCA 0.839166 20.577399 776.776962 27.870719 0.954646
RNN-GA 0.840992 20.371043 767.957818 27.712052 0.954693
RNN-PSO 0.840021 20.696997 772.646707 27.796523 0.954500
RNN-ABC 0.840545 20.260896 770.114390 27.750935 0.954653
RNN-FA 0.838957 20.594586 777.782662 27.888755 0.954043

Once again, the introduced modified algorithm shows decent performance attaining the best outcomes
across all metrics, coming in second to the ABC algorithm only for the MAE metric. These outcomes are
further broken down in to by step comparisons between algorithms and shown in Table 4

Per step, outcomes indicated that the proposed algorithm attained the best results across all metrics when
forecasting three steps ahead. Additionally, it attained admirable results for two steps ahead, being only
outdone by the ABC metaheuristic for the MAE metric. Finally, an interesting observation can be made
cornering one step ahead of forecasts, as the ABC algorithm demonstrated the best performance. This
suggests that when making shorter-term forecasts, the ABC algorithm might be used to further improve
the performance of the introduced algorithm in future works. This is, of course, in line with the NFL [9]
theorem that states that no unified approach works the best for all possible cases across all metrics.

The improvements in convergence rates made by the alterations introduced to the original SCA can be
seen in Figure 2 for the objective and in Figure 3 for the indicator function.

As it can be observed in both Figure 2 as well as Figure 3 there is a significant improvement compared to
the original metaheuristics further enforcing the introduced alterations improve outcomes applied to this
challenge.

Finally, to facilitate experiment repeatability, parameters selected by each metaheuristic for their
respective best-performing RNN models are given in Tabel 5 for future research.
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Table 4: Indicator function overall outcomes
Method Metric One step ahead Two steps ahead Three steps ahead
RNN-MSCA R2 0.839783 0.845011 0.845031

MAE 20.454731 20.309227 20.316001
MSE 773.792810 748.544113 748.449073
RMSE 27.817132 27.359534 27.357797
IoA 0.955419 0.955827 0.955046

RNN-SCA R2 0.837034 0.840250 0.840213
MAE 20.580278 20.538985 20.612935
MSE 787.072487 771.538215 771.720184
RMSE 28.054812 27.776577 27.779852
IoA 0.955025 0.954879 0.954034

RNN-GA R2 0.840141 0.841558 0.841276
MAE 20.292095 20.379977 20.44106
MSE 772.068105 765.220403 766.5849
RMSE 27.786114 27.662617 27.687270
IoA 0.955378 0.954748 0.953952

RNN-PSO R2 0.837710 0.841851 0.840501
MAE 20.737549 20.605859 20.747582
MSE 783.805604 763.805997 770.328521
RMSE 27.996528 27.637040 27.754793
IoA 0.954937 0.954947 0.953616

RNN-ABC R2 0.840512 0.840909 0.840214
MAE 20.160222 20.253474 20.368991
MSE 770.273198 768.356943 771.713029
RMSE 27.753796 27.719252 27.779723
IoA 0.955639 0.954675 0.953645

RNN-FA R2 0.838389 0.839764 0.838719
MSE 20.544537 20.549328 20.689894
MSE 780.525742 773.887274 778.934971
RMSE 27.937891 27.818829 27.909406
IoA 0.954913 0.954277 0.952940

Table 5: Parameters selected for the best-performing models generated by the evaluated metaheuristics
Method Learning Rate Dropout Epochs Layers Neurosn L1 Neurons L2 Neurons L3
RNN-MSCA 0.008880 0.164743 400 2 273 100 /
RNN-SCA 0.008441 0.197548 300 2 300 300 /
RNN-GA 0.008759 0.126558 517 3 162 251 100
RNN-PSO 0.000984 0.108635 484 3 199 110 119
RNN-ABC 0.010000 0.075093 594 3 186 165 246
RNN-FA 0.010000 0.200000 351 3 189 272 213

6. Conclusion
The conducted work explored the forecasting potential of RNN coupled with metaheuristic optimization
for tackling sunspot prognosis. As sunspots are common precursors to solar flares that can cause
geomagnetic storms and result in radio interference and damage to sensitive systems, a robust method for
forecasting can help prevent infrastructure damage. To optimize the performance of RNN models, a
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modified version of the well-established SCA is introduced that overcomes some of the known deficiencies
of the original. Several well-known optimizer algorithms have been subjected to testing alongside the
introduced modified version of the metaheuristic under identical testing continuations. Evaluated on a
real-world dataset, the introduced metaheuristics demonstrated admirable performance outperforming the
competition.

Future work will focus on further refining the introduced methodology and improving prediction accuracy.
Additionally, the potential of the proposed approach will be explored when applied to other pressing
real-world. issues.
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