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Introduction

Decision-making is a fundamental cognitive process that permeates all facets of human existence,
from personal decisions to intricate professional endeavors. It is my privilege as a professor to shed
light on the significance and breadth of decision-making in various disciplines, emphasizing its
crucial role in shaping outcomes, managing resources, and fostering progress.Success in the realms
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of business and management is predicated on the ability to make decisions. Effective leaders make a
multitude of decisions every day, spanning from strategic planning to resource allocation and risk
evaluation. In this context, decisions frequently involve weighing prospective profits against
associated risks, optimizing operational efficiency, and anticipating market trends. In order to
remain competitive and ensure sustainable development, it is crucial to be able to make sound
decisions amidst uncertainty and a dynamic business environment. Engineering and technology
disciplines are distinguished by complex problem-solving and innovation, requiring well-informed
decisions at every stage of project development. Material selection, design decisions, and
implementation strategies are examples of crucial decisions that engineers must make in order to
achieve desired results, whether they are building a bridge, developing a new software system, or
designing energy-efficient structures. These disciplines require a balance between performance,
safety, cost-effectiveness, and environmental impact when making decisions. In healthcare and
medicine, choices have substantial effects on patient health and treatment efficacy. To diagnose
maladies, prescribe treatments, and determine appropriate interventions, medical professionals must
rely on evidence-based decision making. Healthcare decisions are also heavily influenced by ethical
considerations, as practitioners must evaluate potential benefits and risks while respecting patient
autonomy and adhering to best practices and legal frameworks. Curriculum design, instructional
methodologies, and student support mechanisms are influenced by decision-making in education and
academia. Administrators and teachers must make decisions that promote a conducive learning
environment, foster critical thinking, and meet the diverse requirements of students. In order to
perpetually improve educational systems, evidence-based decisions in education involve the careful
evaluation of learning outcomes and pedagogical approaches. In the realm of public policy and
administration, decision-making influences the functioning of societies and the lives of millions.
When drafting legislation and regulations, policymakers must address intricate social, economic,
and environmental issues. In deliberations, empirical data are analyzed, stakeholders are consulted,
and competing interests are balanced to produce policies that are effective, fair, and sustainable and
serve the public interest. Decision-making is crucial to addressing ecological challenges and
conserving natural resources within the context of environmental and sustainability sciences.
Experts and policymakers must consider ecological impact, climate change, and sustainable resource
management when evaluating the potential consequences of various actions. The objective of
decisions in this field is to establish a balance between human needs and environmental preservation
for the benefit of future generations.

Evidently, decision-making is a fundamental cognitive process that transcends all spheres of human
activity. Its significance lies in guiding action, propelling development, and shaping the future. In
every discipline, optimal solutions require decision-makers to navigate complexities, uncertainties,
and ethical considerations. In the pursuance of knowledge, progress, and societal well-being, the
scope of decision-making is unbounded, providing a common thread that binds diverse fields
together. It was also revealed that it is impossible to model the operating conditions of human
cognition mechanisms using simple data handling strategies that are based on crisp integers. As a
direct consequence of using these methods, decision-makers (DMs) are left with murky conclusions
and decisions that are not entirely transparent. As a consequence of this, DMs require a new
ideology that enables them to interpret ambiguous data values and maintain their decision-making
requirements according to the context. This is necessary in order for them to cope with confusing
and fuzzy circumstances that occur in the world. In this sense, Zadeh has revolutionized the use of
fuzzy set theory to represent ambiguous data [1]. Atanassov uncovered the concept of an
intuitionistic fuzzy set (IFS) [2], and Yager produced a Pythagorean fuzzy set (PFS), which is an
extension of IFS [3-5]. Senapati & Yager proposed the idea of Fermatean fuzzy sets (FrFSs) [6].

Data aggregation is vital for decision-making in many different domains, including corporate,
administrative, social, medical, technological, psychological, and artificial intelligence. In the past,
consciousness of the alternative was considered to be a discrete quantity or a linguistic number. On
the other hand, because of the degree of uncertainty involved, the data cannot be easily aggregated.
In point of fact, AOs play an important part in the context of MCDM difficulties, the primary
objective of which is to arrive at a single number by combining a number of different inputs. Wang
and Garg [7] proposed the idea of "Archimedean based Pythagorean fuzzy interactive" based
operations and AOs with application to MCDM. Wang et al. [8] proposed the "Pythagorean fuzzy
interactive Hamacher power" AOs with application to the assessment of express service quality.
Huang et al. [9] initiated the idea of "Pythagorean fuzzy MULTIMOORA method based on distance
measure and score function" with application to MCDM. Lin et al. [10] proposed the "directional



correlation coefficient measures" for PFSs. Lin et al. [11] introduced the "correlation coefficient and
entropy measures' for linguistic PFSs. Meng et al. [12] gave the idea of "knowledge diffusion
trajectories in the Pythagorean fuzzy field based on main path analysis'. Lin et al. [13] gave the
"bibliometric analysis" for the PFSs. Chen et al. [14] proposed the framework of MCDM for the
"sustainable building material selection’. Chen et al. [15] also introduced the "expertise-based bid
evaluation for construction-contractor selection with generalized comparative linguistic ELECTRE
ITI". Chen et al. [16] proposed the newly idea of determining passenger demands and evaluating
passenger satisfaction based on the online-review analysis. Wei and Lu [17] gave the idea of
"Pythagorean fuzzy power AOs", Wu and Wei [18] presented the idea of "Pythagorean fuzzy
Hamacher AOs" and Garg [19] proposed "confidence levels based Pythagorean fuzzy AOs" with
application to MCDM. Qiyas et al. [20] introduced concept of "Yager operators with the picture
fuzzy set environment and its application to emergency program selection". Linear Diophantine
fuzzy soft-max AOs and numerically validated approach to modeling water hammer phenomena is
given in [21,22]. Several methods have been proposed for handling decision-making problems
including g-rung orthopair fuzzy Aczel-Alsina AOs [23], g-rung orthopair fuzzy Einstein interactive
geometric AOs [24].

The remaining portions of this article are organized as shown below. The concepts that are essential
to FrFS are discussed in Section 2. In Section 3, we examined how the FrF prioritized AOs based
on the priority vector and how effectively it was doing so. In Section 4, we present a method for
resolving MCDM issues that is based on the introduction of new AOs. In Section 5, you can find a
selection application for the agricultural land, as well as a comparative study with other methods.
The conclusion of Section 6 includes some parting remarks as well as some suggestions for the future.

Certain fundamental concepts

In this particular section of the paper, we take into consideration some fundamental concepts and
operational principles associated with FrFNs.

Definition 0.1. [6] Assume FrF'S 7 in Q is defined as
T ={(¢.T 5, h (<) 1 s € Q}
where 37§, hZ§: Q — [0, 1] defines the MSD and NMSD of the alternative ¢ € Q and V¢ we have
0< T (e) + h'%(s) < 1.

Definition 0.2. [6] Let .77, = (171, 1%1) and .77y = (375, h’s) be FrFNs. ¢ > 0, Then
1) yji = <ﬁ€1,J’Y1>

Definition 0.3. [6] Let .77 = (17, i) be the FrFN, score function Z of 77 is defines as

277 =1 - p”

(77 e [-1,1].
Definition 0.4. [6] Let .77 = (17, i) be the FrFN, then an accuracy function H of 77 is defines
as
H(TY) =1° 4 1
H(T% €0,1].

3 3
We introduce another score function, to support this type of research, 0(R) = L% s We

can see that 0 < 0<(R) < 1. This new score function satisfy all properties of score function defined
by Senapati & Yager [6].



Definition 0.5. [6] Assume that 77, = (17,, 1) is the conglomeration of FrFNs, and
FrEWA: A" — A, if

FrFWA(T™, T%,...77,) = Zﬁgng

=0T BT, .. 7'6ugju
where A" is the set of all FrFNs, and H= (3:31,3:)2, . ,f)u)T is weight vector (WV), such that
u

0<$H, <1and nyu = 1. Then, the FrFWA is called the "Fermatean weighted average operator".
g=1

Theorem 0.6. [6] Let 77, = (I7,,h’,) be the conglomeration of FrFNs,we can find FrFWG by

FrEWA(T?, T%,... 77,) < 1*H — I35 Hh‘f-‘?>

g=1

Definition 0.7. [6] Assume that 77, = (37,, 1) is the conglomeration of FrFN, and
FrFFWG:A™ — A, if

FrFWG( TN, T, 7)) =3 77

=9 eI e..., T
where A" is the set of all FrFNs, and H= (3:31,3:)2, . ,YJ )T is WV, such that 0 < H, <1 and

Zj%u = 1. Then, the FrFWG is called the Fermatean weighted geometric operator.
g=1

Theorem 0.8. [6] Let 73, = (17,,h',) be the conglomeration of FrFNs, we can find FrFWG by

FrFWG(T, T%,... 77,) = <H:n§9, o/(1- T - hf;*)ﬁy)> (0.1)
g=1 g=1

Definition 0.9. Let 739 = (I",,h*,) be the conglomeration of FrFNs, and FFFPWA:A™ — A, be a

n dimension mapping. if

FrFPWA(§31,9327...93u)—< =l T e ujz 2®...,® u:“ y3u> (0.2)
>3, p =" >3
g=1 g=1 g=1

then the mapping FrFPWA is called Fermatean prioritized weighted averaging (FrtFPWA) operator,
j—1

where ij = H 05(7%%) (j=2...,n), 31 =1 and 05(F7}) is the score of k" FrFN,
k=1

Definition 0.10. Let 77, = (17,,/¢,) be the conglomeration of FrFNs, and FrFPWG:A" — A, be
a n dimension mapping. if

pu] 3y
>3, Zi 3,
FrFPWG(T7, 7%, ... 7%,) = (9319:1 ® 75 ®...,73" ) (0.3)

then the mapping FrFPWG is called Fermatean prioritized weighted geometric (FrTFPWG)

Jj—1
operator, where 3; = H 05(7%) (j=2...,n), 31 =1 and 05(77}) is the score of k" FrFN,
k=1



Fermatean fuzzy prioritized aggregation operators with PDs

Within this section, we present the notion of FrFPA, operator and FrFPG, operator.

FrFPA, operator

Let 77, = (I7,,h%,) be the conglomeration of FrFNs, there is a prioritization among these FrFNs
expressed by the strict priority orders eh ~11, g1, STy - - T, F3,_1, where

g3, ~11,, T 3,41 indicates that the FrFN .74, has II, higher priority than ylu_H.

II = (11, O, ..., IT,—1) is the (u — 1) dimensional vector of PDs. The conglomeration of such
FrFNs with strict priority orders and PDs is denoted by Rg.

Definition 0.11. A FrFPA, operator is a mapping from R} to Ry and defined as,

FFPAL(T, T, 7)) =Y 7 e V7, (DT, (0.4)
N _
where C,Ed) _ 5 H 0 ( f‘.' Hq, for each g = (2,3,...,u) and Ty = 1. Then

ZT(d) q=1

FrFPA, is called Fermatean prioritized averaging operators with PDs.

Theorem 0.12. Assume 939 = (I7,, hfg) is the conglomeration of FrENs, we can also find
FrFPA; by

FrFPAd(ﬂjl,ﬁjg,...7§Ju) = C{d)yjl@ééd)yj?»”' an(Ld)yj

S

u

o1 - [T -1 ¢l I )% (0.5)

g=1 g=1

g—1
(d)
where §g(d) = UL, T;d) = H (ﬁg(gjq))uq, for each g =(2,3,...,u) and Ty = 1.

SUTINE

g=1

Proof. To prove this theorem, we use mathematical induction.

For u =2
@ 1 _ (3 3¢ @ o6
G T = 1—(1—371)1,711
@ 51 _ (2 3ye(D e6s”
G T = L—(1=3)% ,h'y
Then



(D71 e P77,

(d) (d)
- (3 1— (1 - 134" w5 ) o (3 1 (1- 13’ p'y )

d d d . d d) d)
:(i/l—(1—37§')”+1—(1—3v)” (1—(1—Jv)”)(1—(1—3@)45)), Rt .h@)

— <\/1 (1fjv )dd) +17(17:['y S (@ (1—(1737 )C“) (1737 )C(d) (1737 )C(d)(lfjv )C(d)),

(d)
128
I 1

(d)
062
B

- (d) (d)
(V- a-—mhda - rpa” wi wg")

u

_ ﬁ 1-13) o G )%

g=1 g=1

This shows that Equation 0.5 is true for © = 2, now let that Equation 0.5 holds for u = b, i.e.,

b
1 51 1y 3y¢(D <5
FrFPA4(771, T7,... T%,) = 31—]‘[ AN | B

g=1
Now u = b+ 1, by operational laws of FrFNs we have,
FrFPA4( T3, T, ... T 1) = FIFPA (71, T3y, ... T3 @ T3
3 ' v3y¢{D - 0¢5" i/ 3 \cltD o eth
= 1—H(1—]g)g,th @( L— (1= Jvppq)teer RS )
g=1 g=1
b 3\ (d) 3 C((H’l) b 3.\ (D) C(d+1) 54- (d) ZC(dJrl)
= I =794 +1 -1 =25, —( o (Ui )(1—(1—37 1)Se+1 ) Hh RO
g=1 g=1 g=1

C(d)

@ b+1

3 Cy £5g

¢1— AN | o
g=1

This shows that for u = b+ 1, Equation 0.5 holds. Then,

i ::]+

u ) u (d)
FFPAL(771, 7%, 70,) = | ¢t - [0 - 13)%" T n's

g=1 g=1

O

Furthermore, the suggested FrFPA; operator is examined to ensure that it has idempotency and
boundary properties. Their explanations are as follows:

Theorem 0.13. Assume that 939 = (I7,,h*,) is the conglomeration of FrFNs, and

T3 = (ming (1,), maz, (h'y)) and T = (maz, (17 ,), min, (h',))



Then,
TV < FrFPAY(T%, 9%,...7%,) < 7"

g—1
(@)
where Cg(d) = uTg , Tg(d) = H (ﬁg(yjq))uq, for each g = (2,3,...,u) and Ty = 1.

Yoo
g=1

Proof. Since,

ming (174) <17y < max, (37,) (0.6)

and
ming (h*,) < h', < maz, (h',) (0.7)

From Equation 0.6 we have,
ming (1) <17y < mazg (I7y)

A i/ming (Ig)3 < Q/(JWQ)B < f/ma:vg (7g)?

& Y1 —mazy (17,)% < /1 (I74)? < Y1 - ming ()

& i/(l —maxg (:I'Yg)?’) o < i/(l - (379)3)<éd) < \3/(1 — ming (.-I"fg)3)C§d)
) < i) < i ()

g=1 g=1

u C(d)
& /1 —mazy (17,)? < \/H 1—-@37) < /1 —ming (I74)3

C(d)

<:>\/ 14+ min; (374)3 < ¢/ — H 1—]"’ )g S{‘/—l+ma:rg(.'l“/g)3

u (fjd)
ﬁ\/l—l—kmmj 1) \/ H(l—T’ ) §€/1—1+maxg(379)3
g=1
u g§d>
& {/min; (I74)3 < i/l — H (1 — (:I”g)‘s) < {/mazy (I7,)
g=1

C(d)

& min (14)° < i/l - H <1 - (379)3) g < mazg (I,)°
g=1

From Equation 0.7 we have,



ming (hzg) < hgg < matg (heg) & ming (heg)céd) < (heg)céd) < maxg (hgg)céd)

u u u
& [Lming (0" < [T )" < T mazy (8 )"
g=1 g=1 g=1

u
. (@) (@) (@
& ming (h,)%" < H(hzg)gg < maz, (h*,)%
g=1

Let
FrFPA4(771, T7,...77,) = 77 = (17, 1Y)

Then, 0°(.7%) =1 — B < maz, (37)% — min; (h*)® = (T maz) So,
O5(T) < 0T naz)-
Again, 05(7%) =1 — B> ming (1) — maz; (h*)* = 65(T7,n) So,
O5(T) > O5(T min).-
If, 05(F77) < 05(T?naz) and 0°(T) > 05(F3in), then
T in <FFPAG(T1, T%,... 7)) < T nae (0.8)

If 05(77) = 0(F7 nas), then I3 — m* = maz, (317)% — min; (k)3

& I? — 1 = maz, (1) — min, (k)3
& 1% =maz, ()3, ne = min, (h*)3
& 1 =mazy, 7, Bt = ming Rt

Now, H(.77) =13 + we = mazx, (1) +ming (h*)® = H(T max)

FrFPAG(F71, 7%, ... 7%) = T ae (0.9)

If 05(77) = 0°(F7,n), then 1° — h = ming (1)% — maz; (h*)3

I3 pt = ming (1) — maz, (h°)?
& 1P =min, ()3, K = maz, (')
&1 =ming I, K =max, i’
Now, H(77) =1 + h*° = min, (17)% + maz, (h)? = H(Tmaz)
FrFPA4(771, T7,...7%) = T in (0.10)

Thus, from Equations 0.8, 0.9 and 0.10, we get

T <BFPALT™, T, 70 < 7"

Theorem 0.14. Assume that if T3, is a FrFN satisfied the property, ng = J3,, Vg then

FT’FPAd(le7yJQayJU) = 930



Proof. Let 73, = (170, %) be the FrFN. Then by assumption, we have ng = 73,, Vg gives
u

17, = Jo and A, = h'o Vg. By Definition 0.11, we have Z Céd). Then by using Theorem 0.12, we

g=1
get

31 e
(]_ _ J’YO)CQ , H hfog
1 g=1

FrFPA. (T, T7,... T%,) = (/11—
g

‘ S >

1—(1=I3)9s=t  ptg!

u

= (:novheo)
= 7

O

Corollary 0.15. If 73, = (17, h%,) is the conglomeration of largest FrFNs, i.e,. 3, = (1,0) for
all g, then

FrFPA4( T3, 77,...77,) = (1,0)
Proof. We can easily obtain Corollary similar to the Theorem 0.14. O
Corollary 0.16. If 73, = (371, 1,) is the smallest FrFN, i.e,. T3, = (0,1), then

FrFPA4(T%1, T, ... 7%,) =(0,1)

Proof. Here, 73, = (0,1) then by definition of the score function, we have,

0°(7) =0
Since,
g—1 -
Tg(d) = H (ﬁg(ﬂjq)) ¢ foreach ¢g=(2,3,...,u) and T = 1.
g=1
We have,

g—1
I, 1 Y 2 —1) —
1" = [[ (65(77%) " = (@*(F7)™) (65(TP)™)... (6°(F-)") =0
g=1
From Definition 0.4, we have

FFPAL(7%,9%,.. . 73) = D7 e V7%, (DT,
=1 911@0 932@...0 9371
=77 =(0,1)

Theorem 0.17. Assume that ng = (174, 1,) and B, = (¢y, p,) are two conglomerations of
FrENs, if r > 0 and B = (175,h’s) is a FrFN, then

1. FrFPA( T @ 6,7 @ B,... 73, ® B) = FrFPA.(T,T%,...77,) & 8

2. FT‘FPAd(ngl7T9:27 . rﬂju) =r FrFPAd(yjl, Ty, ... gju)

3.

FrEPA4( T2 @ b1, T @ Bay ... T3 @ Br) = FrEPA( T3, T3,... T7,) ® FrFPA4(B1, Ba, . . . Bu)
4. FrFPAG(r 73, @ 8,1 T3 ®B,...®rT3, @ B) =r FrFPA«(T3,7%,...77,) & p

Proof. This is trivial by definition. O



FrFPA, operator satisfied following properties.
Property:1
Assume that 77, = (17, h%,) is the conglomeration of FrFNs, then we have

FrFPA4(771, 77, ... 77,) = RlFPWA(Z7,, 77,,...77,)  (0.11)

lim
(I ,Ig,...,1Ty —1)—(1,1,...,1)

Proof. Given that, (IT;, 5, ..., 11,_1) — (1,1,...,1) from this we have,

g—1

7(d) — (ﬁc(yl ))Hq N 91:[ (ﬁc(y]q)) =T,

g
1

q

by this we obtain, Cé(,d) — (g
i, 11,0001 ) = (1,1,..01) FFPA4(T 7, T, 77,)

_ Jim D7 @l T, (DT,
(I11 s, Ty 1 )= (1,1,001) 1 2 oo

GIN® LT, T

= BFPWA(Z%,9%,...9%)

O

Remark 0.18. When II; =1I, =...,=1I,_; = 1, Property:1 states that the existing FrFPWA
operator is a particular situation of the suggested FrFPA, operator. As a result, FrFPA, operator
is more generic than FrFPWA operator.

Property:2
Assume that 77, = (17,,h%,) is the conglomeration of FrFNs and 6°(.77,) # 0 for all g, then we
have

1
lim FrFPA( T, T7,... 7)) = (T & The,...,e7%,)  (0.12)
(Hy,Mg,...,IT, —1)—(0,0,...,0) Uu

Proof. Given that, (IT;, 15, ..., 11,_1) — (0,0,...,0) from this we have,
o Cater o

d 7(d)
and C!g ) = - = % Hence

7(d)
2.7

RFPAL (T, T, 70,) = %(931 o 7he,... eT%)

lim
(H1,H2,‘..,Hu,l)%((],(),...,0)

O
Property:3
Assume that 77, = (17,,h%,) is the conglomeration of FrFNs and &<(.7%;) # 0 or 1, then we have
lim FrFPA4(77,77%,...97,) =% (0.13)
I, —+o0

Proof. Here, I1; — 400 for each g = 2,3, ..., u we have

g—1

g S 0o 2 1\
T = [T (6°(F2)) ™ = (0°(77)7) (6°(T)™)... (6°(F-)" ) =0
q=1
v @ (@
Because, 0 < ﬁg(ﬂjl) <1, ZTg(d) T(d) 1= C(d) = uTli =1 and Céd) = uTgi
& > ol > 1y
g=1 g=1

10



for each g = 2,3, ..., u. Hence,

lim FrFPA4(T%, T7,...7%,) =T

H14)00

O

Remark 0.19. According to Property:3, when IT; — 400, the PD II; of FrtFN .77, is very high in
comparison to the PDs of other FrFNs. It indicates that FrFN .77, is extremely essential. As a
result, .73, determines the aggregation result obtained by using the proposed operator FrFPA in
this case.

Property:4
Assume that 77, = (17,,h%,) is the conglomeration of FrFNs and &¢(77,) # 0 for all
g=1,2,...k+1, and ﬁg(ﬂjkﬂ) # 1 then we have

1
li FtFPA, (T3, T, ... T3,) = —— (T3 1, ... 8
(Ul,U2,~~’Hk’Hk-1¢—rlr;ﬁ‘(0’0am’07+00) ' d(y St 7 ) k+ 1(? 18 T8, &7 k+1)
(0.14)
Proof. Given that, (II;, s, ..., g, k1) — (0,0,...,0,400). So,
g—1
d g 1 2 —1
130 =[] (05(72))" = (0(F*)™) (0°(T)"2) ... (05(T 1))
q=1

(05(77))° (05(T7%2))°... (0°(F%-1))" =1
foreach g =2,3,...,k+ 1.

g—1
0" = [T (e5(72) ™ = (o5(770)™) (65(7%)") ... (05(F7 ) ) =

g=1

(05(77))° (05(T7))° .. (0(T))° (0T ki) T (0°(TTgor)) ot = 0

Vo=k+2,k+3,...,u
So,
ST T — k4 1and ¢ = 50— 5 L
g=1

737 foreach g =1,2,3,.. k+ 1.

(d)
C!Sd):uT97—>kLH:Oforeachg=k+27k+3,~--»u-
d
o0
g=1

Hence,

1
lim FrFPAG(T%, T, ... T3) = ——

Th o Ihe,... 057
(I1,y,..., 1, g 1)—(0,0,...,0,+00) k+1( 1® 2® O k1)

O

Remark 0.20. When (111, s, ... g, k1) — (0,0,...,0,400), it means there’s no
prioritization association between the FrFNs Z31,.7%,, .. ., 9Jk+1 and that all of these FrFNs
T3 T3y, ..., T34 have a much higher priority than the FrFNs F7,, 0.7 43,...,7%,. As a
result, the aggregated value is solely dependent on FrFNs 77,77, ...,. 73,1 , and these FrFNs
T3 T3y, ..., T4 have similar weightage in the aggregation method.

Property:5
Assume that 77, = (17,,h%,) is the conglomeration of FrFNs and ¢<(7%41) # 1 or 0 then we
have

lim FrFPA4(771, 77, ... 77,) = RiFPWA(Z & T%.@, ..., 0.7 111)
(H1,H2,...,Hk,Hk+1)4)(1,1,.‘.71,-'1-00)
(0.15)

Proof. Given that, (IT;,11a,..., g, Mgyq) = (1,1,...,1,4+00). So,

g—1

T = T[ (05(F2 )" = (65T )™) (05(T)2) ... (05(T o)1) = (6°(TN) (05(T))...

q=1
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for each g =2,3,...,k+ 1.

g—1
0 =TI (65T )" = ((T2)™) (65T ... (65(T )™ ) =

L (ONTN) (5T (0T (T ) 05T ) = 0
Vg=k+2,k+3,...,u

So,
v k+l 7@
ZTQ( = ZT and C(d) w (d) - k—&-?q for each ¢ =1,2,3,....k + 1.
- Zng ZTQ
9= g=1
(d)
éd): uTg _>k+i) :Oforeachg:k+2’k+3,...,u
d

>0 3T,

g=1 g=1
Hence,

lim FrFPA4(771, T7,... 77,) = iFPWA(9, & %@, ..., 1)
(Hl,H2,..A,Hk,Hkﬁ,l)—}(171,...,1,—‘1—00)

O

Remark 0.21. When (IT;, o, ..., g, gyq) — (1,1,...,1,4+00), it means there’s normal
prioritization association between the FrFNs Z3,, 77,,..., 73 k+1 and that all of these FrFNs
T3 T%,..., yjk_l,_l have a much higher priority than the FrFNs 93k+293k+3, ., T3, As a
result, the aggregated value is solely dependent on FrFNs 73,97, ..., 73,.1.

FrFPG, operator

Assume ng = I,,n%) (9=1,2..,u) is the conglomeration of FrFNs, there is a prioritization
among these FrFNs expressed by the strict priority orders 73, ~11, T3, o (P L T3,
where 77, ~11,, 3 .41 indicates that the FrFN .77, has II,, higher priority than .77, .

d = (11,1y,...,II,_1) is the (u — 1) dimensional vector of PDs. The conglomeration of such FrFNs
with strict priority orders and PDs is denoted by Rg.

Definition 0.22. A FrFPG, operator is a mapping from $4 to $4 and defined as,

(d) (d) (d)
BFPGy (77, T, ... 7)) = 73 @ 733 ... 73 (0.16)
(0 _ T ) _ T i
where (5 = , Ty H (ﬁg(qu)) ¢, for each g = (2,3,...,u) and Ty = 1. Then

Z T(d) q=1

FrFPGy is called Fermatean prioritized geometric operator with PDs.

Theorem 0.23. Assume 73, = (37,,h,) is the conglomeration of FrFNs, we can also find
FTFPGd by

(d) (d) (d)
FrFPGy( T2, 7%, 70 = 73 @733 ... 73
= | JT@s" ¢ H oy I (0.17)
g=1

g—1

where ng = 50—, Téd) = H (ﬁg(yjq))uq, for each g = (2,3,...,u) and Ty = 1.

Proof. To prove this theorem, we use mathematical induction.
For u =2

(d) (
T = (:Wﬁl 1—(1—nt) ‘””)

12



(d) (d)
735 = (187 V-0 )

(d) .
- <J”§1 A1-a- hff)dd)) ® (J”éz 1 (1-ntd) (d))

(d) (d)
TE g ¢ 1= = m” 1= = nE (1= - ) (1- - >>

. A
2,\/1 (=B 41— 1= — (1= - - = 5 - T - )
/

- <2W§i I8 V- - e (1 - ) M)

h[B C(d)

I
N
z:
’Q’
T
'.:1

This shows that Equation 0.17 is true for v = 2, now let that Equation 0.17 holds for u = b, i.e.,

C(d)

b
FrFPGy(7, T, ... T, = Hzng 31*1_[ — )

g=1

Now u = b+ 1, by operational laws of FrFNs we have,
FI‘FPGd(yjl, 932, S 9]()4_1) e FI‘FPGd(le, ng, S yjb) ® gjb_H

° C b 3, +(d) ¢ldth (D
= HT N 1—H he Ca (Jwaf \/1— 1—hzb+1) b1 )
g=1 g=1
b S 231 g3\l b 231 (@ ’ ¢+
= (IIrs" i ,31—H SR = w8 (- T w5 ) (1- a9
_ g=1
ML b1 5
= J]>s ¢t H — Rt,)%
g=1

This shows that for u = b + 1, Equation 0.17 holds. Then,

C(d)

“ (d)
RFPCy(77, 7%, 77 = [ [[ 75 ”*H )

Theorem 0.24. Assume that T3, = (17, h’,) is the conglomeration of FrFNs, and

T = (ming (ng),maa?g (hzg)) and yj+ = (maajg (ng),ming (hzg))

Then,
T < FrFPGy( T, 7%,... 77,) < 77"

13



g—1
(@)
where Cg(d) = uTy , T;d) = H (ﬁg(ﬂjq))uq, for each g = (2,3,...,u) and Ty = 1.

S
g=1

Proof. Proof is same as Theorem 0.13. O

Theorem 0.25. Assume that if T3, is a FrFN satisfied the property, ﬂjg = 773,, Vg then
FrFPGy( T, T3%,...7%,) = 77,

Proof. Let 73, = (I7o, h%,) be the FrFN. Then by assumption, we have ng = 77, Vg gives

Iy =170 and h"g = h'o Vg. By Definition 0.22, we have z“: C;d). Then by using Theorem 0.23, we

g=1
get

FFPCy(T%, T7,...77,)

b D h ENEC)
vaog 731_1_[(1_50)(9
g=1

g=1

S S

b e [ R € R O L

(.TYO, heo)
= 71

O

Corollary 0.26. If 77, = (1",,h",) is the conglomeration of largest FrFNs, i.e,. T3, = (1,0) for
all g, then
FrFPGy( 731, 73,...77,) = (1,0)
Proof. We can easily obtain Corollary similar to the Theorem 0.25. O
Corollary 0.27. If 73, = (371, k1) is the smallest FrFN, i.e,. T3, = (0,1), then
FrFPGy(771,T%,...77,) = (0,1)

Proof. Here, 77, = (0,1) then by definition of the score function, we have,

0°(7%) =0
Since,
g—1
Téd) = H (ﬁ‘(yjq))nq, foreach ¢g=1(2,3,...,u) and T =1.
q=1
We have,
g—1
g 1 2 —1)
1,7 = [[(0°(77) " = (0°(77)") (5(T)™)... (05(F7-1)! ) =0
qg=1

From Definition 0.4, we have

16
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(d) (d)
FeFPGy(7, T, ... 73 = 7% 0732 ..., 7
—9he INe.. g7
=7 =(0,1)
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Theorem 0.28. Assume that 77, = (17, h%,) and By = (¢4, p,) are two conglomerations of
FrENs, if r >0 and B = (I7g,h%s) is a FrFN, then

1. FrFPGy(T* @ B, T @ B,... 7%, @ B) = FrFPGy( T3, T%,...73,) @B

2. FrFPGy(rT3,,r T3, .. v T%,) =1 FrFPGy( T3, T%,...7%,)

3.

FrFPGy( T ® b1, T32® B, ... T3 ® Bn) = FrFPGy( T3, T, ... T7,) @ FrEPGy(B1, Bas - - - Bu)
4. FrFPGy(r 73, @ B,r T3 ®B,... ®rT3, @ B) =r FrFPGy(T3,73,...77,) @ p

Proof. This is trivial by definition. O

FrFPG4 operator also satisfied following properties.

Property:1

Assume that 73, = (17,,h%,) is the conglomeration of FrFNs, then we have

FrFPGy( 771, T, ... 77,) = RFPWG(77,, 9%,,...77,)  (0.18)

lim
(L1,o,.. Oy —1)—(1,1,...,1)

Property:2
Assume that 77, = (17,,h%,) is the conglomeration of FrFNs and ¢<(77,) # 0 for all g, then we
have

1
lim FrFPGy( 771, 7%,...97,) = (71 @ The,...,©7%)  (0.19)
(H17H2 ..... Hu_l)ﬁ(0,0 ,,,,, O) u
Property:3
Assume that 77, = (17,,h%,) is the conglomeration of FrFNs and ¢°(.77;) # 0 or 1, then we have
lim FrFPGy(77,7%,...77,) =97 (0.20)
I} —»+o0
Property:4

Assume that 77, = (17,,h%,) is the conglomeration of FrFNs and &°(.77,) # 0 for all
g=1,2,...,k+1,and 0°(77 1) # 1 then we have

FrFPGd(yjh T, ... yju) =

lim = TR TH®,...,05%
(T4, T g T 1) (0,0,...,0,400) i 2 e+1)

(0.21)

Property:5
Assume that 77, = (17,,h%,) is the conglomeration of FrFNs and ¢<(7%;1) # 1 or 0 then we
have

lim FrFPGy(7%, 77, ... 7%,) = RFFPWG(9 099, ...,0T%11)
(I, H2,..., g, Hpy1)—(1,1,...,1,+00)
(0.22)

Methodology for MCDM using proposed AOs

Let &/¢ = {&/%, /%, ..., 97%,,} be the conglomeration of alternatives and

¢ ={€¢°1,6%2,...,€°,} is the conglomeration of criterions, priorities are assigned between the
criterions provided by strict priority orientation. €1 >, €°2 1, €°3... >1,_, €°n, indicates
criteria € ; has a high priority than € ;4 with degree II, for ¢ € {1,2,...,(n —1)}.

K ={K;,K,,...,K,} is a conglomeration of decision-makers (DMs). Priorities are assigned
between the DMs provided by strict priority orientation, Ky >, K2 =y Ks... i K,. DMs

give a matrix according to their own standpoints D®) = (,%’Z(f ))me where 935;’ ) is given for the

alternatives 7%, € /¢ with respect to the attribute €, € ¢ by K, DM. If all Performance
criteria are the same kind, there is no need for normalization; however, since MCGDM has two
different types of Evaluation criteria (benefit kind attributes 7, and cost kinds attributes 7.), the
matrix D(p) has been transformed into a normalize matrix using the normalization formula
y @) — (%f))mm,

Phye. 4
('%zf )Ca .7 S Te
%(p) j € Tp.

1y

(P ) xn = { (0.23)
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where (,%’Z(f ))C show the compliment of %’g’ )
The suggested operators will be implemented to the MCGDM, which will require the preceding

bf/?yb. ~4+1l
ﬂlsul TUIIIIY
Step 1:
Obtain the decision matrix D®) = (%Ef))mxn in the format of FrFNs from DMs.
€<, €<y €<,
-~ 1 1 1.
Kl “Qfgl ( 117he%1) (:I 1257#%2) """ (J 1n7h£1n)
Ay (a 21»7#21) (I 22’#22) """ (a 2n7he2n)
o |@E L) @) e @0,
3 /3 3
Ky &% | (I,05)  (@9,0,) e oy ‘;’mﬁe n)
DSy | (DELRS) (D R,) e (13, 8%,)
A mm,3>om% ma) e (P%ﬁs)
KP '52{51 (J Iljlvhép ) (J ;172’th ) """ ( 1nvhep )
%52 (3 217he ) (3722’715 ) """ (J'VQn,h%n)
%Em (J’le, hep ) ('Tme’ hep ) """ (‘Tﬂ;rnw th )

Step 2:

Two kinds of criterion are described in the decision matrix: (7.) cost type indicators and ()
benefit type indicators. There is no need for normalisation if all indicators are of the same kind, but
in MCGDM, there may be two types of criteria. The matrix was updated to the transforming
response matrix in this case Y?) =
Step 3:

Using one of provided AOs to combine all of the independent FrF-decision matrices

(.@fjp ))an using the normalization formula Equation 0.23

vy — (2, (p))mxn into one combined evaluation matrix of the alternatives W®) = (Xij)mxn-
%ij = FrFPA (321(]1 7'@13 e y(p))
» .? P (z>
z=1 z:l
or
%ij = FIFPG (20, 2O )
P (=) “
= TMane =11 (- .
z=1 z=1

Step 4:
Aggregate the FrF-values X;; for each alternative «7¢; by the FrFPA, (or FrFPG,) operator.
)zij = FrFPAd(ﬁﬂ, gig, "o ym)

n Cij n
= ¢r-1I <1 _‘V?j> o) (0.26)
j=1 j=1
or
Xij = F'FPGo(Zi1, Pia, ... Pin)
n n 3 Cij
= [T@». ¢r-1] (1 r/”) (0.27)
j=1 j=1



Step 5:

Analyze the score for all cumulative alternative assessments.

Step 6:

The alternatives were classified by the score function and the most suitable alternative was selected.

Case study

This case study aims to demonstrate the significance of material selection in engineering design,
particularly when confronted with multiple criteria, including cost. An engineering team is
entrusted with selecting the most suitable material for a crucial component of a heavy-duty
industrial machine in a hypothetical scenario. The evaluation of the alternatives is based on four
criteria: mechanical properties, environmental impact, manufacturability, and cost. The objective of
the team’s analytical approach is to arrive at a decision that optimizes the component’s
performance while keeping costs in control. The engineering team is developing a crucial component
for a mining industry heavy-duty industrial machine. The material selection process for this
component plays a crucial role in determining the final product’s overall performance, durability,
and cost-effectiveness. In order to attain an optimal performance-to-cost ratio, the team has
identified four key criteria: mechanical properties, environmental impact, manufacturability, and
cost. Cost is a particularly important criterion, as the undertaking has a strict budget constraint.

e Mechanical Properties: The mechanical properties of the material are fundamental in ensuring
the component’s ability to withstand heavy loads, high temperatures, and harsh operating
conditions. The team will evaluate tensile strength, hardness, fatigue resistance, and other
relevant properties to ensure the chosen material can meet or exceed the required performance
standards.

e Cost: Cost is a critical factor in this decision-making process. The team needs to strike a
balance between material performance and affordability. The material’s cost per unit will be
compared to the overall budget and weighed against the other criteria to determine the most
cost-effective option.

¢ Manufacturability: The ease of manufacturing and processing the material into the required
shape and specifications is crucial to maintaining efficient production processes. The team will
analyze factors such as machinability, weldability, and forming capabilities of each alternative.

o Environmental Impact: Considering the growing concern for environmental sustainability, it is
imperative to assess the environmental impact of each material option. Factors such as
recyclability, carbon footprint, and the presence of hazardous substances will be evaluated to
minimize the environmental footprint of the chosen material.

o Surface Finish Quality: The surface finish quality criterion assesses the final appearance and
texture of the component’s surface. A smooth and aesthetically appealing surface is desirable
for certain applications, especially when exposed to customers or end-users.

Alternatives:

o Steel Alloy (7¢;): Steel Alloy A is a commonly used material known for its excellent
mechanical properties and cost-effectiveness. It has high tensile strength, good fatigue
resistance, and is relatively easy to manufacture. However, its environmental impact and
recyclability need to be thoroughly assessed.

o Aluminum Alloy (#7¢5): Aluminum Alloy B boasts high strength-to-weight ratio, good
corrosion resistance, and recyclability. Nevertheless, it may fall short in mechanical properties
when compared to steel. The higher cost of aluminum is a potential drawback.

« Composite Material (7%3): Composite Material C offers the potential for exceptional
mechanical properties and weight reduction. It may also exhibit a lower environmental impact
due to reduced material usage. However, its manufacturability and cost may pose challenges.

« Cast Iron (@7¢,): Cast Iron D is a classic material known for its excellent mechanical
properties, low cost, and ease of casting. However, it may have a higher environmental impact,
and its weight could be a concern for certain applications.
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Numerical illustration

Consider a decision making problem of finding out the most appropriate material selection. Assume
the conglomeration of alternatives, «7¢1, &/%,, @75 and @/, given as above. There are five
criterions for evaluation of these alternatives €= mechanical properties, 2= cost, €°3=
manufacturability, ¥°4= environmental impact and % °5= surface finish quality. Assume that the
criterions have been prioritized in strict priority order €1 >11, €°2 >, €°3 >1, €°4 >1, €°s.
The three dimensional vector of PD is d = (2, 1, 3, 2). Here three DMs K;, Ko and K3 are involved,

they have been prioritized in strict priority order K; > Ko >y, K3, where d” = (3, 4).

Al 41
XTEOTTUIITIY

Step 1:

Obtain the decision matrix D®) = (%’g’ ))an in the format of FrFNs from DMs. The judgement

values, given by three DMs, are described in Table 2.

Table 2: Rating given by DMs

Experts Alternatives €1 E o C 3 Cc4 C 5
K, a7 (0.644, 0.246)  (0.244, 0.721)  (0.737, 0.172)  (0.832, 0.244)  (0.831, 0.129)
A (0.595, 0.180)  (0.422, 0.711)  (0.433, 0.647)  (0.612, 0.320)  (0.520, 0.322)
s (0.445, 0.420)  (0.145, 0.462)  (0.622, 0.421)  (0.582, 0.426)  (0.515, 0.138)
A (0.235, 0.290)  (0.344, 0.693)  (0.437, 0.240)  (0.455, 0.347)  (0.527, 0.239)
K, 9 (0.764, 0.415)  (0.487, 0.235)  (0.853, 0.235)  (0.873, 0.168)  (0.844, 0.443)
A (0.563, 0.129)  (0.534, 0.839)  (0.387, 0.728)  (0.131, 0.762)  (0.167, 0.259)
A (0.483, 0.247)  (0.566, 0.623)  (0.290, 0.140)  (0.827, 0.657)  (0.573, 0.837)
A, (0.237,0.964)  (0.460, 0.926)  (0.779, 0.868)  (0.555, 0.735)  (0.783, 0.925)
K FA (0.288,0.822)  (0.677, 0.225)  (0.373, 0.183)  (0.877, 0.221)  (0.384, 0.213)
P (0.276, 0.174)  (0.422, 0.753)  (0.427, 0.643)  (0.644, 0.336)  (0.517, 0.346)
P (0.724, 0.456)  (0.425, 0.469)  (0.619, 0.421)  (0.528, 0.422)  (0.537, 0.353)
&y (0.426, 0.231)  (0.421, 0.671)  (0.473, 0.228)  (0.427, 0.323)  (0.674, 0.266)
Step 2:

Normalize the decision matrixes acquired by DMs using Equation 0.23. In Table 2, there are two
types of criterions. Cs is cost type criteria and others are benefit type criterions. Normalized FrF

decision matrix given in Table 3.

Step 3:

Using FrFPA 4 opeartor to combine all of the independent FrFdecision matrices Y (P) = (Wij Vmxn
into one combined evaluation matrix of the alternatives W®) = ()Zij)mxn given in Table 4. First we

find Ti(jl) TSQ) and T@

] 1y 0

1 _
T =

— ==

—
e

e ol =
— =
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(p)



Table 3: Normalized FrF decision matrix

Experts Alternatives (ggl %gz (g§3 (5§4 %g,_r,
Ky o8 (0.644, 0.246)  ( 0.721, 0.244)  (0.737,0.172)  (0.832, 0.244)  (0.831, 0.129)
o/ (0.595, 0.180)  ( 0.711, 0.422)  (0.433, 0.647)  (0.612, 0.320)  (0.520, 0.322)
o/ (0.445, 0.420)  ( 0.462, 0.145)  (0.622, 0.421)  (0.582, 0.426)  (0.515, 0.138)
g8, (0.235, 0.290) (0.693, 0.344) (0.437, 0.240)  (0.455, 0.347)  (0.527, 0.239)
Ky o8 (0.764, 0.415) (0.235, 0.487) (0.853, 0.235)  (0.873, 0.168)  (0.844, 0.443)
o/ (0.563, 0.129) (0.839, 0.534) (0.387, 0.728)  (0.131, 0.762)  (0.167, 0.259)
o/ (0.483, 0.247) (0.623, 0.566) (0.290, 0.140)  (0.827, 0.657)  (0.573, 0.837)
o8y (0.237, 0.964) (0.926, 0.460) (0.779, 0.868)  (0.555, 0.735)  (0.783, 0.925)
K3 o8 (0.288, 0.822) 0.225, 0.677) (0.373, 0.183)  (0.877, 0.221)  (0.384, 0.213)
o6y (0.276, 0.174) (0.753, 0.422) (0.427, 0.643)  (0.644, 0.336)  (0.517, 0.346)
oS (0.724, 0.456) (0.469, 0.425) (0.619, 0.421)  (0.528, 0.422)  (0.537, 0.353)
o8y (0.426, 0.231) (0.671, 0.421) (0.473, 0.228)  (0.427, 0.323)  (0.674, 0.266)
Table 4: Combined evaluation matrix
E1 AP A Cc4 A
/8 (0.8361, 0.2772)  (0.6624, 0.3240)  (0.7844, 0.1455)  (0.8058, 0.2845)  (0.8219, 0.2304)
o6 (0.7469, 0.1813)  (0.7671, 0.4035)  (0.4271, 0.6757)  (0.5760, 0.3505)  (0.4788, 0.3160)
o6 (0.7043, 0.3812)  (0.5169, 0.3925)  (0.6249, 0.2907)  (0.6196, 0.4947)  (0.5472, 0.4289)
o5, (0.4233, 0.3371)  (0.7909, 0.4293)  (0.5569, 0.2467)  (0.4654, 0.4035)  (0.6061, 0.3520)
0.4884 0.3035 0.3849 0.4727 0.4429
7@ 0.4112 0.2645 0.0590 0.2159 0.1628
ii 7\ 0.2948 0.1273 0.1999 0.1654 0.1716
0.1568 0.2403 0.1645 0.1408 0.1955
0.1008 0.0003 0.1411 0.1776 0.1451
73 _ 0.0479 0.1272 0.0004 0.0021 0.0094
i\ 0.0261 0.0106 0.0129 0.0351 0.0006
0.0001 0.1651 0.0045 0.0027 0.0010
Step 4:

Aggregate the FrFvalues X;; for each alternative @7%; by the FrFPA, operator using Equation 0.26
given in Table 5.

Step 5:

0.6109
0.4975
0.4186
0.2691

|
— e

0.3838
0.3447
0.2255
0.1905

0.1554
0.0196
0.0511
0.0369
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0.0874
0.0064
0.0159
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Table 5: FrF aggregated values X;

Y1 (0.791187, 0.257588 )
Yo (0.719510, 0.288512)
s (0.657383, 0.373734)
X4 (0.568093, 0.366204)

Compute the score for all aggregated values ;.

0°(%1) = 0.739087
0%(X2) = 0.674236
0°(X3) = 0.615944
0°(X4) = 0.567115

Step 6:
Ranks according to score values.
X1 = X2 = X3 = X4
So,
%61 }%52 }%53 }%54

7% is best alternative among all other alternatives.

Conclusion

Using MSDs and NMSDs to handle ambiguity in the data, the current endeavor employs FrFNs.
The FrF framework expands upon the IFS paradigm. Considering stringent priority orders, we
introduced the concepts of FrFPA, operator and FrFPG, operator with PDs. Numerous PD
hypotheses have been exhaustively investigated, and they will be beneficial when combining
numerous FrF data. A group MCDM approach based on the proposed prioritized AOs has been
developed under the FrF framework. The proposed technique is illustrated with an analogy, and the
results of the methodology are contrasted to those of several existing AOs. The effect of PDs on
aggregated outcomes is otherwise comprehensively explained. Moreover, the influence of PDs on
outcomes makes the proposed solution more robust because the DM can select the PD vector based
on his or her priorities and the problem’s complexity. We implement the proposed group MCDM
methodology to a case study regarding the selection of agricultural land. Some functional
applications of the proposed work in imprecise inferences could be explored in the future. In
addition to decision-making, medical diagnosis, pattern recognition, computational intelligence, and
artificial intelligence, we would employ the suggested AOs and MCDM methodology. In the future,
we will also concentrate on developing methods for objectively acquiring PD.
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