Selection of Appropriate Portfolio Optimization Strategy
DOI:
https://doi.org/10.31181/taci1120237Keywords:
Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Dynamic Programming (DP), Differential Evolutionary Algorithm (DE algo), Portfolio Optimization, LOPCOW, CARDISAbstract
Portfolio optimization is a critical task in financial management, aiming to maximize expected returns while minimizing risk. This study compares the performance of Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Dynamic Programming (DP), and Differential Evolutionary Algorithm (DEA) in optimizing portfolios in the NIFTY 50 market. Using daily stock data from March 2023 to May 2023, we evaluate the algorithms based on performance metrics including the Sharpe ratio, expected return, volatility and Sortino ratio. Then an integrated multi-criteria decision making (MCDM) framework of Logarithmic Percentage Change-driven Objective Weighting (LOPCOW) and Compromise Ranking of Alternatives from Distance to Ideal Solution (CRADIS) methods has been used to compare the evolutionary algorithms for portfolio optimization. The results show that PSO outperforms the other algorithms in terms of Sharpe Ratio and Expected Return, while DEA exhibits the lowest portfolio risk. Furthermore, the efficient frontier analysis confirms PSO's ability to generate portfolios with higher expected returns at the same risk level. This research highlights the effectiveness of optimization algorithms in portfolio management and provides valuable insights for investors and portfolio managers in maximizing returns and managing risks.
Downloads
References
Aghamohammadi, A., Dadashi, H., Sojoudi, M., Sojoudi, M., & Tavoosi, M. (2022). Optimal portfolio selection using quantile and composite quantile regression models. Communications in Statistics-Simulation and Computation, 1-11. https://doi.org/10.1080/03610918.2022.2094961
Ali, A. F., & Tawhid, M. A. (2017). A hybrid particle swarm optimization and genetic algorithm with population partitioning for large scale optimization problems. Ain Shams Engineering Journal, 8(2), 191–206. https://doi.org/10.1016/J.ASEJ.2016.07.008
Aluffi-Pentini, F., Parisi, V. & Zirilli, F. Global optimization and stochastic differential equations. Journal of Optimization Theory and Applications, 47, 1–16 (1985). https://doi.org/10.1007/BF00941312
Aquino, L. D. G., Sornette, D., & Strub, M. S. (2023). Portfolio selection with exploration of new investment assets. European Journal of Operational Research, 310(2), 773-792. https://doi.org/10.1016/j.ejor.2023.03.017
Ban, J., Wang, Y., Liu, B., & Li, H. (2023). Optimization of venture portfolio based on LSTM and dynamic programming. AIMS Mathematics, 8(3), 5462-5483. https://doi.org/10.3934/math.2023275
Bellman, R. (1954). The theory of dynamic programming. Bulletin of the American Mathematical Society, 60(6), 503-515
Bellman, R. (1966). Dynamic programming. Science, 153(3731), 34-37. DOI: 10.1126/science.153.3731.34
Berouaga, Y., El Msiyah, C., & Madkour, J. (2023). Portfolio Optimization Using Minimum Spanning Tree Model in the Moroccan Stock Exchange Market. International Journal of Financial Studies, 11(2), 53. https://doi.org/10.3390/ijfs11020053
Biswas, S., & Anand, O. P. (2020). Logistics Competitiveness Index-Based Comparison of BRICS and G7 Countries: An Integrated PSI-PIV Approach. IUP Journal of Supply Chain Management, 17(2), 32-57.
Biswas, S., & Joshi, N. (2023). A performance based ranking of initial public offerings (IPOs) in India. Journal of Decision Analytics and Intelligent Computing, 3(1), 15-32. https://doi.org/10.31181/10023022023b
Biswas, S., Bandyopadhyay, G., & Mukhopadhyaya, J. N. (2022b). A multi-criteria based analytic framework for exploring the impact of Covid-19 on firm performance in emerging market. Decision Analytics Journal, 5, 100143. https://doi.org/10.1016/j.dajour.2022.100143
Biswas, S., Bandyopadhyay, G., & Mukhopadhyaya, J. N. (2022f). A multi-criteria framework for comparing dividend pay capabilities: Evidence from Indian FMCG and consumer durable sector. Decision Making: Applications in Management and Engineering, 5(2), 140-175. DOI:10.31181/dmame0306102022b
Biswas, S., Bandyopadhyay, G., Guha, B., & Bhattacharjee, M. (2019). An ensemble approach for portfolio selection in a multi-criteria decision making framework. Decision Making: Applications in Management and Engineering, 2(2), 138-158. https://doi.org/10.31181/dmame2003079b
Biswas, S., Bandyopadhyay, G., Pamucar, D., & Joshi, N. (2022e). A Multi-criteria based stock selection framework in emerging market. Operational Research in Engineering Sciences: Theory and Applications, 5(3), 153-193. https://doi.org/10.31181/oresta161122121b
Biswas, S., Bandyopadhyay, G., Pamucar, D., & Sanyal, A. (2022d). A decision making framework for comparing sales and operational performance of firms in emerging market. International Journal of Knowledge-based and Intelligent Engineering Systems, 26(3), 229-248. DOI:10.3233/KES-221601
Biswas, S., Chatterjee, S., & Majumder, S. (2022c). A spherical fuzzy framework for sales personnel selection. Journal of Computational and Cognitive Engineering. https://doi.org/10.47852/bonviewJCCE2202357
Biswas, S., Datta, D., & Kar, S. (2023b). Energy Efficiency and Environmental Sustainability: A Multi-Criteria based Comparison of BRICS and G7 Countries. In Emerging Technology and Management Trends in Environment and Sustainability: Proceedings of the International Conference, EMTES-2022 (p. 107). Taylor & Francis. https://doi.org/10.4324/9781003356233
Biswas, S., Gupta, S., Upadhyay, A., Bandyopadhyay, G., & Shaw, R. (2023a). A New Grey Correlational Compromise Ranking Approach for Portfolio Selection for Investment in ESG Stocks. In International Conference on Advances in Computing and Data Sciences (pp. 566-580). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-37940-6_46
Biswas, S., Pamucar, D., & Mukhopadhyaya, J. N. (2022a). A multi-criteria-based analytical study of the impact of COVID-19 on ELSS fund performance. International Journal of Management and Decision Making, 21(4), 339-378. DOI:10.1504/IJMDM.2022.10048438
Biswas, S., Pamucar, D., Chowdhury, P., & Kar, S. (2021). A new decision support framework with picture fuzzy information: comparison of video conferencing platforms for higher education in India. Discrete Dynamics in Nature and Society, 2021, 1-22. https://doi.org/10.1155/2021/2046097
Biswas, S., Pamucar, D., Raj, A., Kar, S. (2023). A Proposed q-Rung Orthopair Fuzzy-Based Decision Support System for Comparing Marketing Automation Modules for Higher Education Admission. In: Chatterjee, P., Pamucar, D., Yazdani, M., Panchal, D. (eds) Computational Intelligence for Engineering and Management Applications. Lecture Notes in Electrical Engineering, vol 984. Springer, Singapore. https://doi.org/10.1007/978-981-19-8493-8_66
Chaweewanchon, A., & Chaysiri, R. (2022). Markowitz Mean-Variance Portfolio Optimization with Predictive Stock Selection Using Machine Learning. International Journal of Financial Studies, 10(3), 64. https://doi.org/10.3390/ijfs10030064
Chen, Y., Zhao, X., & Yuan, J. (2022). Swarm intelligence algorithms for portfolio optimization problems: Overview and recent advances. Mobile Information Systems, 2022. https://doi.org/10.1155/2022/4241049
Cura, T. (2009a). Particle swarm optimization approach to portfolio optimization. Nonlinear Anal Real World Appl, 10(4), 2396–2406. https://doi.org/10.1016/j.nonrwa.2008.04.023
Cura, T. (2009b). Particle swarm optimization approach to portfolio optimization. Nonlinear Analysis: Real World Applications, 10(4), 2396–2406. https://doi.org/10.1016/j.nonrwa.2008.04.023
Deliktaş, D., & Ustun, O. (2023). Multi-objective genetic algorithm based on the fuzzy MULTIMOORA method for solving the cardinality constrained portfolio optimization. Applied Intelligence, 53(12), 14717-14743. https://doi.org/10.1007/s10489-022-04240-6
Deliktaş, D., & Ustun, O. (2023). Multi-objective genetic algorithm based on the fuzzy MULTIMOORA method for solving the cardinality constrained portfolio optimization. Applied Intelligence, 53(12), 14717-14743. https://doi.org/10.1007/s10489-022-04240-6
Drenovak, M., Ranković, V., Urošević, B., & Jelic, R. (2022). Mean-maximum drawdown optimization of buy-and-hold portfolios using a multi-objective evolutionary algorithm. Finance Research Letters, 46, 102328. https://doi.org/10.1016/j.frl.2021.102328
Eberhart, R. C., & Shi, Y. (2001). Particle swarm optimization: Developments, applications and resources. Proceedings of the IEEE Conference on Evolutionary Computation, ICEC, 1, 81–86. https://doi.org/10.1109/CEC.2001.934374
Ecer, F., & Pamucar, D. (2022). A novel LOPCOW‐DOBI multi‐criteria sustainability performance assessment methodology: An application in developing country banking sector. Omega, 112, 102690. https://doi.org/10.1016/j.omega.2022.102690
Ecer, F., Küçükönder, H., Kaya, S. K., & Görçün, Ö. F. (2023). Sustainability performance analysis of micro-mobility solutions in urban transportation with a novel IVFNN-Delphi-LOPCOW-CoCoSo framework. Transportation Research Part A: Policy and Practice, 172, 103667. https://doi.org/10.1016/j.tra.2023.103667
Erwin, K., & Engelbrecht, A. (2023). Multi-Guide Set-Based Particle Swarm Optimization for Multi-Objective Portfolio Optimization. Algorithms, 16(2), 62. https://doi.org/10.3390/a16020062
Faridi, S., Madanchi Zaj, M., Daneshvar, A., Shahverdiani, S., & Rahnamay Roodposhti, F. (2023). Portfolio rebalancing based on a combined method of ensemble machine learning and genetic algorithm. Journal of Financial Reporting and Accounting, 21(1), 105-125. https://doi.org/10.1108/JFRA-11-2021-0413
Golmakani, H. R., & Fazel, M. (2011). Constrained Portfolio Selection using Particle Swarm Optimization. Expert Systems with Applications, 38(7), 8327–8335. https://doi.org/10.1016/J.ESWA.2011.01.020
Görçün, Ö. F., Pamucar, D., & Biswas, S. (2023). The blockchain technology selection in the logistics industry using a novel MCDM framework based on Fermatean fuzzy sets and Dombi aggregation. Information Sciences, 635, 345-374. DOI:10.1016/j.ins.2023.03.113
Gunjan, A., & Bhattacharyya, S. (2023). A brief review of portfolio optimization techniques. Artificial Intelligence Review, 56(5), 3847–3886. https://doi.org/10.1007/S10462-022-10273-7
Gupta, S., Bandyopadhyay, G., Bhattacharjee, M., & Biswas, S. (2019a). Portfolio Selection using DEA-COPRAS at risk–return interface based on NSE (India). International Journal of Innovative Technology and Exploring Engineering (IJITEE), 8(10), 4078-4086. DOI: 10.35940/ijitee.J8858.0881019
Gupta, S., Bandyopadhyay, G., Biswas, S., & Mitra, A. (2023). An integrated framework for classification and selection of stocks for portfolio construction: Evidence from NSE, India. Decision Making: Applications in Management and Engineering, 6(1), 774-803. https://doi.org/10.31181/dmame0318062021g
Gupta, S., Bandyopadhyay, G., Biswas, S., & Upadhyay, A. (2019b). A hybrid machine learning and dynamic nonlinear framework for determination of optimum portfolio structure. In Innovations in Computer Science and Engineering: Proceedings of the Sixth ICICSE 2018 (pp. 437-448). Springer Singapore. https://doi.org/10.1007/978-981-13-7082-3_50
Hamdi, A., Karimi, A., Mehrdoust, F., & Belhaouari, S. B. (2022). Portfolio Selection Problem Using CVaR Risk Measures Equipped with DEA, PSO, and ICA Algorithms. Mathematics, 10(15), 2808. https://doi.org/10.3390/math1015280
Harik, G. R., Lobo, F. G., & Goldberg, D. E. (1999). The compact genetic algorithm. IEEE transactions on evolutionary computation, 3(4), 287-297. DOI:10.1109/4235.797971
Holland, J. H. (1973). Genetic algorithms and the optimal allocation of trials. SIAM journal on computing, 2(2), 88-105. https://doi.org/10.1137/0202009
Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66-73. http://dx.doi.org/10.1038/scientificamerican0792-66
Jia, X., & Cai, X. (2022, July). A policy gradient based particle swarm optimizer for portfolio optimization problem. In 2022 41st Chinese Control Conference (CCC) (pp. 1991-1996). IEEE. https://doi.org/10.23919/CCC55666.2022.9901620
Kamali, S. (2014). Portfolio Optimization Using Particle Swarm Optimization and Genetic Algorithm. Journal of Mathematics and Computer Science, 10(02), 85–90. https://doi.org/10.22436/JMCS.010.02.01
Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on genetic algorithm: past, present, and future. Multimedia Tools and Applications, 80(5), 8091–8126. https://doi.org/10.1007/s11042-020-10139-6
Krishankumar, R., & Ecer, F. (2023). Selection of IoT service provider for sustainable transport using q-rung orthopair fuzzy CRADIS and unknown weights. Applied Soft Computing, 132, 109870. https://doi.org/10.1016/j.asoc.2022.109870
Liu, W. H. (2017). Optimal computing budget allocation to the differential evolution algorithm for large-scale portfolio optimization, Journal of Simulation, 11(4), 380–390. https://doi.org/10.1057/JOS.2016.12
Mukherjee, A., Singh, A. K., Mallick, P. K., & Samanta, S. R. (2022). Portfolio Optimization for US-Based Equity Instruments Using Monte-Carlo Simulation. In Cognitive Informatics and Soft Computing: Proceeding of CISC 2021 (pp. 691-701). Singapore: Springer Nature Singapore. DOI:10.1007/978-981-16-8763-1_57
Narang, M., Joshi, M. C., Bisht, K., & Pal, A. (2022). Stock portfolio selection using a new decision-making approach based on the integration of fuzzy CoCoSo with Heronian mean operator. Decision Making: Applications in Management and Engineering, 5(1), 90-112. https://doi.org/10.31181/dmame0310022022n
Nila, B., & Roy, J. (2023). A new hybrid MCDM framework for third-party logistic provider selection under sustainability perspectives. Expert Systems with Applications, 234, 121009. https://doi.org/10.1016/j.eswa.2023.121009
Nowak, M., & Trzaskalik, T. (2022). A trade-off multiobjective dynamic programming procedure and its application to project portfolio selection. Annals of Operations Research, 311, 1155-1181. https://doi.org/10.1007/s10479-020-03907-y
Oh, K. J., Kim, T. Y., & Min, S. (2005). Using genetic algorithm to support portfolio optimization for index fund management. Expert Systems with Applications, 28(2), 371–379. https://doi.org/10.1016/J.ESWA.2004.10.014
Palanisamy, K., & Parthasarathy, K. (2016). Stock Returns and Volatility: Evidence from Nifty 50 Index. Asian Journal of Research in Social Sciences and Humanities, 6(5), 434. https://doi.org/10.5958/2249-7315.2016.00127.1
Pamucar, D., & Biswas, S. (2023). A novel hybrid decision making framework for comparing market performance of metaverse crypto assets. Decision Making Advances, 1(1), 49-62. https://doi.org/10.31181/dma1120238
Puška, A., Božanić, D., Mastilo, Z., & Pamučar, D. (2023a). Extension of MEREC-CRADIS methods with double normalization-case study selection of electric cars. Soft Computing, 27(11), 7097-7113. https://doi.org/10.1007/s00500-023-08054-7
Puška, A., Božanić, D., Nedeljković, M., & Janošević, M. (2022b). Green supplier selection in an uncertain environment in agriculture using a hybrid MCDM model: Z-Numbers–Fuzzy LMAW–Fuzzy CRADIS model. Axioms, 11(9), 427. https://doi.org/10.3390/axioms11090427
Puška, A., Nedeljković, M., Prodanović, R., Vladisavljević, R., & Suzić, R. (2022c). Market assessment of pear varieties in Serbia using fuzzy CRADIS and CRITIC methods. Agriculture, 12(2), 139. https://doi.org/10.3390/agriculture12020139
Puška, A., Nedeljković, M., Stojanović, I., & Božanić, D. (2023c). Application of fuzzy TRUST CRADIS method for selection of sustainable suppliers in agribusiness. Sustainability, 15(3), 2578. https://doi.org/10.3390/su15032578
Puška, A., Stević, Ž. & Pamučar, D. (2022a). Evaluation and selection of healthcare waste incinerators using extended sustainability criteria and multi-criteria analysis methods. Environment, Development and Sustainability, 24, 11195–11225. https://doi.org/10.1007/s10668-021-01902-2
Puška, A., Štilić, A., & Stojanović, I. (2023b). Approach for multi-criteria ranking of Balkan countries based on the index of economic freedom. Journal of Decision Analytics and Intelligent Computing, 3(1), 1-14. https://doi.org/10.31181/jdaic10017022023p
quantmod: Quantitative Financial Modelling Framework. (n.d.). Retrieved July 11, 2023, from https://www.quantmod.com/
Saepudin, D., & Guintana, D. R. (2022). Stock Portfolio Optimization on JII Index using Multi-Objective Mean-Absolute Deviation-Entropy. International Journal on Information and Communication Technology (IJoICT), 8(1), 30-40. https://doi.org/10.21108/ijoict.v8i1.623
Sefiane, S., Benbouziane, M., Sefiane, S., & Benbouziane, M. (2012). Portfolio Selection Using Genetic Algorithm, Journal of Applied Finance and Banking, 4(2), 143-154. https://EconPapers.repec.org/RePEc:pra:mprapa:41783
Sen, J., & Dutta, A. (2022). A comparative study of hierarchical risk parity portfolio and eigen portfolio on the NIFTY 50 stocks. In Computational Intelligence and Data Analytics: Proceedings of ICCIDA 2022 (pp. 443-460). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-3391-2_34
Sen, J., & Dutta, A. (2022). Design and analysis of optimized portfolios for selected sectors of the Indian stock market. In 2022 International Conference on Decision Aid Sciences and Applications (DASA) (pp. 567-573). IEEE. https://doi.org/10.48550/arXiv.2210.03943
Shahid, M., Shamim, M., Ashraf, Z., & Ansari, M. S. (2022). A novel evolutionary optimization algorithm based solution approach for portfolio selection problem. IAES International Journal of Artificial Intelligence, 11(3), 843. http://doi.org/10.11591/ijai.v11.i3.pp843-850
Silva, N. F., dos Santos, M., Gomes, C. F. S., & de Andrade, L. P. (2023). An integrated CRITIC and Grey Relational Analysis approach for investment portfolio selection. Decision Analytics Journal, 100285. https://doi.org/10.1016/j.dajour.2023.100285
Simic, V., Dabic-Miletic, S., Tirkolaee, E. B., Stević, Ž., Ala, A., & Amirteimoori, A. (2023). Neutrosophic LOPCOW-ARAS model for prioritizing industry 4.0-based material handling technologies in smart and sustainable warehouse management systems. Applied Soft Computing, 143, 110400. DOI:10.1016/j.asoc.2023.110400
Skomorokhov, F., Wang, J., Ovchinnikov, G., Burnaev, E., & Oseledets, I. (2023). An event-triggered iteratively reweighted convex optimization approach to multi-period portfolio selection. Expert Systems with Applications, 216, 119427. DOI:10.1016/j.eswa.2022.119427
Song, Y., Zhao, G., Zhang, B., Chen, H., Deng, W., & Deng, W. (2023). An enhanced distributed differential evolution algorithm for portfolio optimization problems. Engineering Applications of Artificial Intelligence, 121, 106004. https://doi.org/10.1016/j.engappai.2023.106004
Storn, R., & Price, K. (1997). Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization, 11(4), 341–359. https://doi.org/10.1023/A:1008202821328
Su, K., Yao, Y., Zheng, C., & Xie, W. (2022). Portfolio Selection Based on EMD Denoising with Correlation Coefficient Test Criterion. Computational economics, 1-31. https://doi.org/10.1007/s10614-022-10345-4
Surtee, T. G., & Alagidede, I. P. (2022). A novel approach to using Modern Portfolio Theory. Borsa Istanbul Review, 25(3), 527-540. https://doi.org/10.1016/j.bir.2022.12.005
Ta, V. D., Liu, C. M., & Tadesse, D. A. (2020). Portfolio optimization-based stock prediction using long-short term memory network in quantitative trading. Applied Sciences, 10(2), 437. https://doi.org/10.3390/app10020437
Thakkar, A., & Chaudhari, K. (2021). A comprehensive survey on portfolio optimization, stock price and trend prediction using particle swarm optimization. Archives of Computational Methods in Engineering, 28, 2133-2164. https://doi.org/10.1007/s11831-020-09448-8
Wang, J., & Gan, X. (2023). Neurodynamics-driven portfolio optimization with targeted performance criteria. Neural Networks, 157, 404-421. https://doi.org/10.1016/j.neunet.2022.10.018
Wang, Z., Zhang, X., Zhang, Z., & Sheng, D. (2022). Credit portfolio optimization: a multi-objective genetic algorithm approach. Borsa Istanbul Review, 22(1), 69-76. https://doi.org/10.1016/j.bir.2021.01.004
Yang, D., Yu, Z., Yuan, H., & Cui, Y. (2022). An improved genetic algorithm and its application in neural network adversarial attack. PLOS ONE, 17(5), e0267970. https://doi.org/10.1371/JOURNAL.PONE.0267970
Yun, K. K., Yoon, S. W., & Won, D. (2023). Interpretable stock price forecasting model using genetic algorithm-machine learning regressions and best feature subset selection. Expert Systems with Applications, 213, 118803. https://doi.org/10.1016/j.eswa.2022.118803
Zhang, X., Zhong, C., & Abualigah, L. (2023). Foreign exchange forecasting and portfolio optimization strategy based on hybrid-molecular differential evolution algorithms. Soft Computing, 27(7), 3921-3939. https://doi.org/10.1007/s00500-022-07526-6
Zheng, Y., & Zheng, J. (2022). A novel portfolio optimization model via combining multi-objective optimization and multi-attribute decision making. Applied Intelligence, 52(5), 5684-5695. DOI:10.1007/s10489-021-02747-y
Zhou, Z., Song, Z., Ren, T., & Yu, L. (2022). Two-Stage Portfolio Optimization Integrating Optimal Sharp Ratio Measure and Ensemble Learning. IEEE access, 11, 1654-1670. https://doi.org/10.1109/ACCESS.2022.3232281